IQAC Image
IQAC Image
DIU Logo
QS Ranking

Journal of Emerging Global Health

Ready to submit? Start a new submission or continue a submission in progress

Submit your manuscript


Navigating the Challenges of Antimicrobial Resistance: Epidemiological Insights and Strategic Solution

Original Article | Published: 20 November 2023 | Volume: 10 Issue: 2

Safayet Jamil

Department of Public Health, Daffodil International University, Dhaka 1216, Bangladesh; Department of Public and Community Health, Faculty of Medicine and Health Sciences, Frontier University Garowe, Puntland, Somalia.

Abstract

Antimicrobial resistance (AMR) poses a significant global threat, compromising the effectiveness of antibiotics and leading to increased morbidity, mortality, and healthcare costs. This review examines the epidemiology, mechanisms, and challenges of AMR while highlighting strategic solutions. AMR emerges through bacterial mutations, horizontal gene transfer, and selection pressure caused by inappropriate antimicrobial use in medicine and agriculture. It affects millions annually, with projections of 10 million deaths by 2050 if unaddressed. Key challenges include over prescription, lack of new antibiotics, weak surveillance, and insufficient infection control. Solutions emphasize antimicrobial stewardship, enhanced surveillance, research into novel therapies, public awareness, and global collaboration under the "One Health" approach. Natural products are highlighted as promising alternatives for combating resistant pathogens. Coordinated efforts across governments, healthcare providers, and communities are essential to mitigate AMR and ensure effective treatment of infectious diseases. This article provides a comprehensive framework for addressing AMR through sustainable and collaborative interventions.

Keywords

Antimicrobial resistance, Antibiotics, Epidemiology, Drug resistance.

Reference

Aljeldah, M. M. (2022). Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics, 11(8), 1082. https://doi.org/10.3390/antibiotics11081082
Bloom, G., Merrett, G. B., Wilkinson, A., Lin, V., & Paulin, S. (2017). Antimicrobial resistance and universal health coverage. BMJ Global Health, 2(4), e000518. https://doi.org/10.1136/bmjgh2017-000518
Chandler, C. I. R. (2019). Current accounts of antimicrobial resistance: Stabilisation, individualisation and antibiotics as infrastructure. Palgrave Communications, 5(1), 53.
CDC. (2022). https://www.cdc.gov/drugresistance/about.html
Chokshi, A., Sifri, Z., Cennimo, D., & Horng, H. (2019). Global contributors to antibiotic resistance. Journal of Global Infectious Diseases, 11(1), 36. https://doi.org/10.4103/jgid.jgid_110_18
Darby, E. M., Trampari, E., Siasat, P., Gaya, M. S., Alav, I., Webber, M. A., & Blair, J. M. A. (2023). Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 21(5), 280–295.
ECDC. (2020). https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobialresistance-europe-2019
Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192
Ito, H., Wada, T., Ichinose, G., Tanimoto, J., Yoshimura, J., Yamamoto, T., & Morita, S. (2022). Social dilemma in the excess use of antimicrobials incurring antimicrobial resistance. Scientific Reports, 12(1), 21084. https://doi.org/10.1038/s41598-022-25632-1
Kabir, H., Hasan, M. K., Tutul, A. H., Islam, M. S., Jamil, S., Das, B. C., ... & Mitra, D. K. (2022). Prevalence and Determinants of Antibiotic Self-Administration Among Adult Antibiotic Users: A Cross-Sectional Study. Patient Preference and Adherence, 2409–2421.
Kim, D.-W., & Cha, C.-J. (2021). Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Experimental & Molecular Medicine, 53(3), 301–309. https://doi.org/10.1038/s12276-021-00569-z
Landecker, H. (2019). Antimicrobials before antibiotics: War, peace, and disinfectants. Palgrave Communications, 5(1), 45. https://doi.org/10.1057/s41599-019-0251-8
Larsson, D. G. J., & Flach, C.-F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257–269. https://doi.org/10.1038/s41579-021-00649-x
Limmathurotsakul, D., Dunachie, S., Fukuda, K., Feasey, N. A., Okeke, I. N., Holmes, A. H., Moore, C. E., Dolecek, C., van Doorn, H. R., Shetty, N., Lopez, A. D., & Peacock, S. J. (2019). Improving the estimation of the global burden of antimicrobial resistant infections. The Lancet Infectious Diseases, 19(11), e392–e398. https://doi.org/10.1016/S1473-3099(19)30276-2
Mendelson, M., & Matsoso, M. P. (2015). The World Health Organization Global Action Plan for antimicrobial resistance. South African Medical Journal, 105(5), 325. https://doi.org/10.7196/SAMJ.9644
Micoli, F., Bagnoli, F., Rappuoli, R., & Serruto, D. (2021). The role of vaccines in combatting antimicrobial resistance. Nature Reviews Microbiology, 19(5), 287–302. https://doi.org/10.1038/s41579-020-00506-3
Miethke, M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., Bode, H. B., Moreira, R., Li, Y., Luzhetskyy, A., Medema, M. H., Pernodet, J.-L., Stadler, M., Tormo, J. R., Genilloud, O., Truman, A. W., … Müller, R. (2021). Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 5(10), 726–749. https://doi.org/10.1038/s41570-021-00313-1
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Nathan, C. (2020). Resisting antimicrobial resistance. Nature Reviews Microbiology, 18(5), 259–260. https://doi.org/10.1038/s41579-020-0348-5
Podolsky, S. H. (2018). The evolving response to antibiotic resistance (1945–2018). Palgrave Communications, 4(1), 124. https://doi.org/10.1057/s41599-018-0181-x
Rex, J. H., Fernandez Lynch, H., Cohen, I. G., Darrow, J. J., & Outterson, K. (2019). Designing development programs for non-traditional antibacterial agents. Nature Communications, 10(1), 3416. https://doi.org/10.1038/s41467-019-11303-9
Theuretzbacher, U., Outterson, K., Engel, A., & Karlén, A. (2020). The global preclinical antibacterial pipeline. Nature Reviews Microbiology, 18(5), 275–285. https://doi.org/10.1038/s41579-019-0288-0
Thornber, K., Verner-Jeffreys, D., Hinchliffe, S., Rahman, M. M., Bass, D., & Tyler, C. R. (2020). Evaluating antimicrobial resistance in the global shrimp industry. Reviews in Aquaculture, 12(2), 966–986. https://doi.org/10.1111/raq.12367
Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics, 9(12), 918. https://doi.org/10.3390/antibiotics9120918
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.
WHO. (2023). https://www.who.int/health-topics/antimicrobial-resistance#tab=tab_1
Wernli, D., Jørgensen, P. S., Morel, C. M., Carroll, S., Harbarth, S., Levrat, N., & Pittet, D. (2017). Mapping global policy discourse on antimicrobial resistance. BMJ Global Health, 2(2), e000378.